
PROGRAMMING IN C - UNIT-I

1 Getting Started

What is C

C is a programming language developed at AT & T’s Bell Laboratories of USA in 1972. It

was designed and written by a man named Dennis Ritchie. Possibly C seems so popular is because

it is reliable, simple and easy to use.

one should first learn all the language elements very thoroughly using C language before

migrating to C++, C# or Java.Major parts of popular operating systems like Windows, UNIX,

Linux is still written in C. This is because even today when it comes to performance (speed of

execution) nothing beats C.

 C language scores over other languages. Many popular gaming

frameworks have been built using C language.

Getting Started with C

The C Character Set

 A character denotes any alphabet, digit or special symbol used to represent information.

Alphabets

A, B, ….., Y, Z

a, b, ……, y, z

Digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Special symbols ~ ‘ ! @ # % ^ & * () _ - + = | \ { }

[] : ; " ' < > , . ? /

Constants, Variables and Keywords

The alphabets, numbers and special symbols when properly combined form constants, variables

and keywords

A constant is an entity that doesn’t change whereas a variable is an entity that

may change.

In any program we typically do lots of calculations. The results of these calculations are stored

in computers memory. Like human memory the computer memory also consists of millions of cells.

The calculated values are stored in these memory cells. To make the retrieval and usage of these values

easy these memory cells (also called memory locations) are given names. Since the value stored in each

location may change the names given to these locations are called variable names.

EX: x = 3

 a = 5

Types of C Constants

C constants can be divided into two major categories:

(a) Primary Constants

(b) Secondary Constants

Rules for Constructing Integer Constants

(a) An integer constant must have at least one digit.

(b) It must not have a decimal point.

(c) It can be either positive or negative.
(d) If no sign precedes an integer constant it is assumed to be

positive.

(e) No commas or blanks are allowed within an integer constant.

(f) The allowable range for integer constants is -32768 to 32767.

Ex.: 426

+782

-8000
-7605

Rules for Constructing Real Constants

Real constants are often called Floating Point constants. The real

constants could be written in two forms—Fractional form and

Exponential form.

Fractional form

(a) A real constant must have at least one digit.

(b) It must have a decimal point.

(c) It could be either positive or negative.

(d) Default sign is positive.

(e) No commas or blanks are allowed within a real constant.

Ex.: +325.34

426.0

-32.76

-48.5792

Exponential form

(a) The mantissa part and the exponential part should be separated

by a letter e.

(b) The mantissa part may have a positive or negative sign.

(c) Default sign of mantissa part is positive.
(d) The exponent must have at least one digit, which must be a

positive or negative integer. Default sign is positive.

(e) Range of real constants expressed in exponential form is
-3.4e38 to 3.4e38.

Ex.: +3.2e-5

4.1e8

-0.2e+3

-3.2e-5

Rules for Constructing Character Constants

(a) A character constant is a single alphabet, a single digit or a single

special symbol enclosed within single inverted commas. Both the

inverted commas should point to the left. For example, ’A’ is a valid

character constant whereas ‘A’ is not.

(b) The maximum length of a character constant can be 1 character.

Ex.: 'A' 'I'

'5'

'='

Types of C Variables

a) A variable name is any combination of 1 to 31 alphabets, digits or
underscores.

b)The first character in the variable name must be an alphabet or

underscore.

c) No commas or blanks are allowed within a variable name.
d)No special symbol other than an underscore (as in gross_sal)

can be used in a variable name.

Ex.: si_int

m_hra

pop_e_89

C Keywords

Keywords are the words whose meaning has already been explained

to the C compiler (or in a broad sense to the computer). The

keywords cannot be used as variable names because if we do so we

are trying to assign a new meaning to the keyword, which is not

allowed by the computer. The keywords are also called ‘Reserved

words’.

There are only 32 keywords available in C

Auto

double

Int

struct

break else long switch

Case enum register typedef

Char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

Do if static while

The First C Program

Rules that are applicable to all C programs:

a) Each instruction in a C program is written as a separate

statement.

b) The statements in a program must appear in the same order in

which we wish them to be executed.

c) Blank spaces may be inserted between two words to improve

the readability of the statement. However, no blank spaces are

allowed within a variable, constant or keyword.

d) All statements are entered in small case letters.

e) C has no specific rules for the position at which a statement is

to be written. That’s why it is often called a free-form language.

f) Every C statement must end with a ;. Thus ; acts as a statement

terminator.

main()

{

int x,y,z ;

x=10;

y=20;

z=x+y;

/* adding two numbers x+y*/

printf ("Addition of two numbers %d",z) ;

}

 Comment about the program should be enclosed within /* */.

 Though comments are not necessary. Any number of comments can be written at any

place in the program.

 Often programmers seem to ignore writing of comments. But when a team is building

big software well commented code is almost essential for other team members to
understand it.

 Comments cannot be nested. For example,

/* Cal of SI /* Author sam date 01/01/2002 */ */

is invalid.

 A comment can be split over more than one line, as in,

/* This is

a jazzy

comment */

main() is a collective name given to a set of statements. This name has to be main(), it

cannot be anything else. All statements that belong to main() are enclosed within a pair of

braces { }

Technically speaking main() is a function

Any variable used in the program must be declared before using it

Any C statement always ends with a ;

Displaying output:

All output to screen is achieved using readymade library

functions. One such function is printf().

The general form of printf() function is,

printf ("<format string>", <list of variables>) ;

Following are some examples of usage of printf() function:

EX: printf ("%f", si) ;

printf ("%d %d %f %f", p, n, r, si) ;

printf ("Simple interest = Rs. %f", si) ;

printf ("Prin = %d \nRate = %f", p, r) ;

printf() can not only print values of variables, it can also print the result of an expression.

printf ("%d %d %d %d", 3, 3 + 2, c, a + b * c – d) ;

Receiving Input

Receiving input can be achieved using a function called scanf(). scanf() receives them from the

keyboard. The ampersand (&) before the variables in the scanf() function is a must. & is an

‘Address of’ operator. It gives the location number used by the variable in memory.

Ex:

scanf ("%d", &num) ;

Compilation and Execution

To type your C program you need another program called Editor. Once the

program has been typed it needs to be converted to machine language (0s and 1s) before

the machine can execute it. To carry out this conversion we need another program called

Compiler. Compiler vendors provide an Integrated Development Environment (IDE)

which consists of an Editor as well as the Compiler.

For example, Turbo C, Turbo C++ and Microsoft C are some of the popular

compilers that work under MS-DOS

The steps that you need to follow to compile and execute your first

C program…

(a) Start the compiler at C> prompt. The compiler (TC.EXE is

usually present in C:\TC\BIN directory).

(b) Select New from the File menu.

(c) Type the program.
(d) Save the program using F2 under a proper name (say

Program1.c).

(e) Use Ctrl + F9 to compile and execute the program.
(f) Use Alt + F5 to view the output.

C Instructions

Now that we have written a few programs let us look at the instructions that we

used in these programs. There are basically three types of instructions in C:

(a) Type Declaration Instruction

(b) Arithmetic Instruction
(c) Control Instruction

The purpose of each of these instructions is given below:

(a)

(b)

(c)

Type Declaration Instruction

Any variable used in the program must be declared before using it in any

statement. The type declaration statement is written at the beginning of main()

function.

Ex.: int bas ;

float rs, grosssal ; char

name, code ;

(a) While declaring the type of variable we can also initialize it as

shown below.

int i = 10, j = 25 ;

float a = 1.5, b = 1.99 + 2.4 * 1.44 ;

Arithmetic Instruction

A C arithmetic instruction consists of a variable name on the left hand side of =

and variable names & constants on the right hand side of =. The variables and

constants appearing on the right hand side of = are connected by arithmetic

operators like +, -, *, and /.

(a) Integer mode arithmetic statement - This is an arithmetic

statement in which all operands are either integer variables or

integer constants.

Ex.: int i, king, issac, noteit ; i

= i + 1 ;

king = issac * 234 + noteit - 7689 ;

(b) Real mode arithmetic statement - This is an arithmetic

statement in which all operands are either real constants or real

variables.

Ex.: float qbee, antink, si, prin, anoy, roi ; qbee =

antink + 23.123 / 4.5 * 0.3442 ; si = prin *

anoy * roi / 100.0 ;

(c) Mixed mode arithmetic statement - This is an arithmetic

statement in which some of the operands are integers and

some of the operands are real.

Type declaration instruction To declare the type of

variables used in a C

program.

Arithmetic instruction To perform arithmetic

operations between con-

stants and variables.

Control instruction To control the sequence of

execution of various state-
ments in a C program.

Ex.: float si, prin, anoy, roi, avg ; int

a, b, c, num ;

si = prin * anoy * roi / 100.0 ;

avg = (a + b + c + num) / 4 ;

(a) Arithmetic operations can be performed on ints, floats and

chars.

Thus the statements,

char x, y ;

int z ;

x = 'a' ;

y = 'b' ;

z = x + y

Integer and Float Conversions

(a) An arithmetic operation between an integer and integer always

yields an integer result.

(b) An operation between a real and real always yields a real result.

(c) An operation between an integer and real always yields a real

result. In this operation the integer is first promoted to a real

and then the operation is performed. Hence the result is real.

I think a few practical examples shown in the following figure

would put the issue beyond doubt.

Operation Result Operation Result

5 / 2 2 2 / 5 0

5.0 / 2 2.5 2.0 / 5 0.4

5 / 2.0 2.5 2 / 5.0 0.4

5.0 / 2.0 2.5 2.0 / 5.0 0.4

Type Conversion in Assignments

For example, consider the following assignment statements.

int i ;

float b ; i

= 3.5 ; b

= 30 ;

Here in the first assignment statement though the expression’s value is a float

(3.5) it cannot be stored in i since it is an int. In such a case the float is demoted

to an int and then its value is stored. Hence what gets stored in i is 3. Exactly

opposite happens in the next statement. Here, 30 is promoted to 30.000000 and

then stored in b, since b being a float variable cannot hold anything except a

float value.

Hierarchy of Operations

Priority Operators Description

1
st * / % multiplication, division, modular division

2
nd + - addition, subtraction

3
rd = assignment

Now a few tips about usage of operators in general.

(a) Within parentheses the same hierarchy as mentioned in Figure

1.11 is operative. Also, if there are more than one set of

parentheses, the operations within the innermost parentheses

would be performed first, followed by the operations within the

second innermost pair and so on.

(b) We must always remember to use pairs of parentheses. A

careless imbalance of the right and left parentheses is a

common error. Best way to avoid this error is to type () and

then type an expression inside it.

A few examples would clarify the issue further.

Example : Determine the hierarchy of operations and evaluate the

following expression:

i = 2 * 3 / 4 + 4 / 4 + 8 - 2 + 5 / 8

Stepwise evaluation of this expression is shown below:

i = 2 * 3 / 4 + 4 / 4 + 8 - 2 + 5 / 8

i = 6 / 4 + 4 / 4 + 8 - 2 + 5 / 8 operation: *

i = 1 + 4 / 4 + 8 - 2 + 5 / 8 operation: /

i = 1 + 1+ 8 - 2 + 5 / 8 operation: /

i = 1 + 1 + 8 - 2 + 0 operation: /

i = 2 + 8 - 2 + 0 operation: +

i = 10 - 2 + 0 operation: +

i = 8 + 0 operation : -

i = 8 operation: +

Control Instructions in C

There are four types of control instructions in C. They are:

(a) Sequence Control Instruction

(b) Selection or Decision Control Instruction

(c) Repetition or Loop Control Instruction
(d) Case Control Instruction

2 The Decision

 Control Structure

As mentioned earlier, a decision control instruction can be

implemented in C using:

(a) The if statement

(b) The if-else statement

(c) The conditional operators

The if Statement

C uses the keyword if to implement the decision control instruction.

The general form of if statement looks like this:

Syntax
The syntax is given below −

if (condition)

{

 Statement (s);

}

The keyword if tells the compiler that what follows is a decision control instruction. The

condition following the keyword if is always enclosed within a pair of parentheses. If the

condition, whatever it is, is true, then the statement is executed. If the condition is not true then

the statement is not executed; instead the program skips past it.

this expression is true if

x == y x is equal to y

x != y x is not equal to y

x < y x is less than y

x > y x is greater than y

x <= y x is less than or equal to y

x >= y x is greater than or equal to y

FLOWCHART:

Here is a simple program, which demonstrates the use of if and the relational operators.

/* Demonstration of if statement */

main()

{

int num ;

printf ("Enter a number less than 10 ") ;

scanf ("%d", &num) ;

if (num <= 10)

printf ("hello,you entered the number less than 10 !") ;

}

Ex: if (3 + 2 % 5)

printf ("This works") ;

if (a = 10)

printf ("Even this works") ;

if (-5)

printf ("Surprisingly even this works") ;

Multiple Statements within if

It may so happen that in a program we want more than one statement to be executed if

the expression following if is satisfied. If such multiple statements are to be executed then

they must be placed within a pair of braces as illustrated in the following example.

The if-else Statement

The if statement by itself will execute a single statement, or a group of statements,

when the expression following if evaluates to true. It does nothing when the expression

evaluates to false.syntax:

if (condition)

{

 // do this if condition is true

 // if true statements

}

else

{

 // do this is condition is false

 // if false statements

}

Flowchart:

Ex:

main()

{

int age;

printf ("Enter your age: ") ;

scanf ("%d”, &age) ;

if (age <= 18)

{

Printf(“you are eligible for vote”);

}

else

{

Printf(“you are not eligible for vote”);

}

}

Nested if-elses

It is perfectly all right if we write an entire if-else construct within either the body of the

if statement or the body of an else statement. This is called ‘nesting’of ifs.

Syntax of Nested if else statement:

if(condition) {

 //Nested if else inside the body of "if"

 if(condition2) {

 //Statements inside the body of nested "if"

 }

 else {

 //Statements inside the body of nested "else"

 }

}

else {

 //Statements inside the body of "else"

}

Flowchart:

Ex:

/* A quick demo of nested if-else */

main()

{

int i ;

printf ("Enter either 1 or 2 ") ;

scanf ("%d", &i) ;

if (i == 1)

printf ("You would go to heaven !") ;

else

{

if (i == 2)

printf ("Hell was created with you in mind") ;

else

printf(“enter the correct number”);

}

Forms of if

The if statement can take any of the following forms:

(a) if (condition)

do this ;

(b) if (condition)

{

do this ;

and this ;

}

(c) if (condition)
do this ;

else

do this ;

(d) if (condition)

{

do this ;

and this ;

}

else

{

do this ;

and this ;

}

(e) if (condition)

do this ;

else

{

if (condition)

do this ;

}

else

{

}

do this ;

and this ;

(f) if (condition)

{

if (condition)

do this ;

else

{

}

}

do this ;

and this ;

else

do this ;

}

Use of Logical Operators

C allows usage of three logical operators, namely, &&, || and !. These are to be read as

‘AND’ ‘OR’ and ‘NOT’ respectively.

There are several things to note about these logical operators. Most obviously, two of them

are composed of double symbols: || and &&. Don’t use the single symbol | and &. These

single symbols also have a meaning

Example 2.6: Write a program to calculate the salary as per the following

table:

Gender Years of Service Qualifications Salary

Male >= 10 Post-Graduate 15000

>= 10 Graduate 10000

< 10 Post-Graduate 10000

< 10 Graduate 7000

Female >= 10 Post-Graduate 12000

>= 10 Graduate 9000

< 10 Post-Graduate 10000

< 10 Graduate 6000

Figure 2.6

main()

{

char g ;

int yos, qual, sal ;

printf ("Enter Gender, Years of Service and Qualifications (0 = G, 1 = PG):") ;

scanf ("%c%d%d", &g, &yos, &qual) ;

if (g == 'm' && yos >= 10 && qual == 1)

sal = 15000 ;

else if ((g == 'm' && yos >= 10 && qual == 0) ||

(g == 'm' && yos < 10 && qual == 1))

sal = 10000 ;

else if (g == 'm' && yos < 10 && qual == 0)

sal = 7000 ;

else if (g == 'f' && yos >= 10 && qual == 1)

sal = 12000 ;

else if (g == 'f' && yos >= 10 && qual == 0)

sal = 9000 ;

else if (g == 'f' && yos < 10 && qual == 1)

sal = 10000 ;

else if (g == 'f' && yos < 10 && qual == 0)

sal = 6000 ;

 printf ("\nSalary of Employee = %d", sal) ;

}

The ! Operator

So far we have used only the logical operators && and ||. The third logical operator is the NOT operator,

written as !.

Ex:

If (y !< 10)

This means “not y less than 10”. In other words, if y is less than 10, the

expression will be false, since (y < 10) is true. We can express the same

condition as (y >= 10).

Hierarchy of Operators Revisited

Operators Type

! Logical NOT

* / % Arithmetic and modulus

+ - Arithmetic

< > <= >= Relational

== != Relational

&& Logical AND

|| Logical OR

= Assignment

The Conditional Operators

The conditional operators ? and : are sometimes called ternary operators

since they take three arguments. In fact, they form a kind of foreshortened if-

then-else. Their general form is,

expression 1 ? expression 2 : expression 3

What this expression says is: “if expression 1 is true (that is, if its value is

non-zero), then the value returned will be expression 2, otherwise the value

returned will be expression 3”. Let us understand this with the help of a few

examples:

(a) int x, y ;

scanf ("%d", &x) ;

y = (x > 5 ? 3 : 4) ;

This statement will store 3 in y if x is greater than 5,

otherwise it will store 4 in y.

	Syntax

